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Approximating chaotic time series through unstable periodic orbits

T. L. Carroll
Code 6343, Naval Research Laboratory, Washington, D.C. 20375

~Received 1 June 1998!

There are many noise reduction methods for chaotic signals, but most only work over a limited signal to
noise range. If chaotic signals are to be used for communications, noise reduction techniques which can handle
larger amounts of noise~or deterministic noise! are needed. Here I describe a method of approximating a
chaotic signal by constructing possible sequences based on unstable periodic orbits. The approximation is good
enough to distinguish between chaotic attractors, even when large amounts of noise are added to the chaotic
signal.@S1063-651X~99!00202-0#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

There has been much work published on removing no
from chaotic signals@1–7#. Much of this work was based o
embedding the chaotic signal in a phase space in orde
eliminate noise. In general, phase-space-based noise re
tion techniques are only good if one can embed the cha
signal in phase space, so that the noise-corrupted point in
phase space is not too far from its noise-free location. T
noise reduction techniques considered were usually lim
to noise on the order of 10% of the amplitude of the chao
signal, although some techniques could handle noise as l
as the chaotic signal.

At the same time, chaos is being considered as a com
nications signal@8–18#. In many situations, communication
signals are subject to large amounts of additive noise. Th
are spread-spectrum communications systems that can
tion when the noise is 1000 times as large as the signal@19#.
‘‘Noise’’ may include random noise, other chaotic signa
used as carriers by other transmitters, and multipath inter
ence, which includes delayed versions of the same cha
signal. If chaotic signals are to be used for communicatio
then noise reduction techniques are necessary that w
when the signal to noise ratio is much less than 1 or the n
is deterministic.

Previous noise reduction techniques have focused on
covering an exact copy of the original chaotic signal. F
some applications, it might be useful just to approximate
original chaotic signal, as long as the approximation rec
ered some useful property of the chaotic signal, such
which attractor the chaotic system was in. In this paper, I
unstable periodic orbits to approximate a chaotic signal.
though there are an infinite number of unstable periodic
bits in a chaotic attractor, many properties of the chao
attractor may be recovered from only the lowest period or
@20–26#. It is possible to construct an approximate skele
of the chaotic attractor by stringing together unstable p
odic orbits. The skeleton will not be exact because the c
otic system may be on some orbits only for a short time,
the skeleton may be good enough for some purposes.
procedure will work better if the chaotic system stays n
each unstable periodic orbit long enough that it complete
full cycle of the orbit, making it easier to identify the orbi
PRE 591063-651X/99/59~2!/1615~7!/$15.00
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II. BASIC METHOD

The basic procedure I use is as follows:~1! Extract low
period unstable periodic orbits from the chaotic system. A
of the known methods for extracting unstable periodic orb
will work for this @21,25,27#. I usually use the method o
close returns applied to a chaotic time series@25#. If an un-
stable period orbit is so unstable that it does not show up
the time series, then it will not contribute to making a go
approximation to the signal. Figure 1, for example, sho
the first five unstable periodic orbits for the Lorenz system
Eq. ~1!.

~2! Piece together individual unstable periodic orbits
create longer periodic orbit sequences. First, one must de
how to match up unstable periodic orbits, i.e., how could o
orbit lead into the next. The most general way to do t
would be first to choose a point on orbitA to be the final
point on that orbit. The final point on orbitA, call it x0 , is a
new initial condition. Using a knowledge of the dynamics,
should be possible to predict the future trajectory from po
x0 . Next, assume some small error inx0 . This small error
can lead to a range of possible values for the point t
comes one time step afterx0 . The initial point on orbitB, the
unstable periodic orbit that follows orbitA, should be within
this range. I use this prediction method below with the log
tic map, although in practice a simpler method may be u
with flows. I describe the simpler method in Sec. III.

Some~or many! of these periodic orbit sequences may n
actually show up in a time series signal. One may comp
~as shown below! the periodic orbit sequences with man
time series signals to see which sequences are actu
present as good approximations to the time series. Peri
orbit sequences that are never useful as approximation
the time series may be eliminated from consideration.

~3! Take all periodic orbit sequences of a given leng
Compare all of these sequences with an equal length piec
the chaotic time series. I use a cross-correlation to comp
I first subtract the mean value from the time series signal
from each individual periodic orbit sequence, so that all s
nals are zero mean. I calculate the cross-correlation betw
each sequence and the piece~or segment! of the time series.
The cross-correlation is normalized so that the largest p
sible value is 1, which occurs for identical signals. I take t
sequence with the largest cross-correlation to be the bes
1615 ©1999 The American Physical Society
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1616 PRE 59T. L. CARROLL
proximation to the piece of the chaotic time series. I th
repeat this procedure for the next segment of the chaotic ti
series. It is necessary to match the phase of the periodic o
sequence to the phase of the time series segment, but th
easily done by using fast Fourier transform techniques
compute the cross-correlation@28#.

Cross-correlation is commonly used in standard spre
spectrum systems@19,29#. To be rigorous, cross-correlation
techniques are used with a set of orthogonal time series
that the cross correlation between the time series is zero
the examples presented in this paper, the signals are not
tually orthogonal. The cross-correlation between two sign
is not zero for these short sequences. Nevertheless, the cr
correlation between two identical periodic orbit sequenc
will be one. Because a chaotic system has a one or m
positive Lyapunov exponents, the cross-correlation betwe
nonidentical sequences will be less than 1, so it is possible
distinguish between periodic orbit sequences using cro
correlation. The accuracy of the cross-correlation calculat
will increase as the sequence length increases and decr
as the noise level increases.

There is a trade-off in extracting a signal from noise: th
longer the sequences, the more of them there are to be c
pared. The number of sequences should increase roughly
ponentially with their length. I show below that not all per

FIG. 1. Unstable periodic orbits for the Lorenz system of E
~1!. ~a! is period 1,~b! is period 2,~c! is period 3, and~d! and ~e!
are period 4.
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odic orbit sequences that I construct actually occur in
attractor, so it should be possible to limit the increase in
number of sequences that need to be considered. It ma
that work on classifying chaotic attractors using gramm
@30# or templates@31# may help limit the number of se
quences under consideration.

III. LORENZ SYSTEM

I start with the Lorenz system as an example. The Lore
equations I use here are

dx

dt
516~y2x!,

dy

dt
52xz145.92x2y, ~1!

dz

dt
5xy24z.

The equations were integrated with a fourth order Run
Kutta integration routine with a time step of 0.028.

I found the periodic orbits for the Lorenz system up
period 4 using a Newton-Raphson algorithm@32#. Figure 1
shows anx-y projection for each of these orbits. As can b
seen, there are only a few basic types of motion for
Lorenz system. We see motion about one center, mo
about both centers, or combinations. Motion around one c
ter or around two centers occurs at incommensurate freq
cies, so these orbits are not true period 1, 2, 3, and 4 or
but I will label them as such for convenience. The length
the period 2 orbit is close to twice the length of the period
orbit, the length of the period 3 orbit is close to three tim
the length of the period 1 orbit, and so on.

As an example of the lack of cross-correlation betwe
different periodic orbits, I constructed sequences consis
only of the x component of the period 2 and 3 orbits.
shifted the phase of one of the sequences to find the m
mum of the cross-correlation function between the two
quences. When the two sequences were four cycles long
maximum of the cross-correlation was 0.49. When the t
sequences were eight cycles long, the maximum of the cr
correlation was 0.24.

The unstable periodic orbits for the Lorenz system may
combined into periodic orbit sequences. In order to comb
the orbits into sequences using the prediction method
scribed above, it is necessary to knowx,y, andz points at the
end of each unstable periodic orbit. Because the Lorenz
tem is a flow, however, there is a simpler approxima
method to combine unstable periodic orbits into sequen
A flow system changes continuously from one time step
the next, so one may attempt to combine orbits by mak
the sequence roughly continuous from the end of one
stable periodic orbit to the beginning of the next. One m
choose a particular arbitrary value of the signal to ma
orbit A and orbitB ~in a periodic system, this would be th
same as matching the phases of the two orbits!. For example,
one may use the point where the orbit crosses zero goin
the positive direction as the matching point. If the orbit do

.
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PRE 59 1617APPROXIMATING CHAOTIC TIME SERIES THROUGH . . .
not cross zero, one may use the point where the orbit m
closely approaches zero. Figure 2 shows an example
sequence consisting of a period 1, period 2, and perio
orbit, all from thex variable of the Lorenz system. The a
bitrary matching condition does lead to some glitches, as
be seen in Fig. 2, but the resulting sequence is good eno
for an approximation.

All possible periodic orbit sequences up to a cert
length are constructed. The dynamics of the particular
namical system may limit which periodic orbit sequences
possible. In the Lorenz system, for example, thex variable is
symmetric about zero. For any periodic orbit, both the or
and its inverse may be used to construct a periodic o
sequence. The period 1 orbit, however, does not cross
origin, as can be seen in Fig. 1. One could not have a
quence consisting of the period 1 orbit followed by its i
verse, because the Lorenz system cannot cross zero wh
a period 1 orbit. It might be possible, on the other hand
have a period 1 orbit, a period 2 orbit, and then the invers
the period 1 orbit.

Some orbits have several zero crossing points, so there
several possible phases in which the orbit may enter in
periodic sequence. The period 3 orbit, for example, has
possible phases. Periodic orbit sequences of a given le
are constructed by combining all unstable periodic orbits
their inverses in all possible phases, eliminating combi
tions obviously not allowed by the dynamics. For the Lore
system, there were 49 possible sequences of length 4, su
period 11period 3, period 21period 11period 1, a single
period 4, etc. The 49 possible period 4 sequences were
combined to produce 2401 sequences of length 8.

I then calculated the cross correlation between each p
odic orbit sequence and an equal length segment from a
renz x time series, subtracting the mean, normalizing, a
checking for the proper phase as above. I took the sequ
that yielded the largest product to be the best approxima
to that segment of the Lorenzx time series.

Figure 3 shows the results of fitting sequences to a Lor
time series from thex variable. Figure 3~a! is the original
Lorenz time series before the mean has been subtracted.
ure 3~b! is an approximation using sequences of length 8~the
mean value has been added back in for the figure!. Figure
3~c! is an approximation when a Gaussian white noise sig
with a rms value of 20 has been added to the original Lor
signal. The rms of the Lorenz signal is 12.7, so the r

FIG. 2. Sample of a periodic orbit sequence for the Lore
system of Eq.~1!. The sequence consists of a period 1 orbit f
lowed by a period 2 orbit and then another period 1 orbit.
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signal to noise ratio was near 0.5, but the approximation w
still good.

In an attempt to reduce the computational burden, I to
1000 period 4 segments from a Lorenzx time series from Eq.
~1!, and fit each one with one of the 49 possible period
sequences. Some of the period 4 sequences were not use
I eliminated these sequences. I then built period 8 seque
by combining the remaining period 4 sequences. As a res
I was left with 961 period 8 sequences, a reduction by
factor of almost 3 in the total number of sequences tha
needed to consider. One might also consider eliminating
quences that are not used very often. The quality of the
proximation might suffer, but the computation time could
reduced.

IV. CIRCUIT DATA

I used data from an electronic circuit to see if this a
proximation technique could work with real data. The circ
was similar to a circuit described in Ref.@33#. The circuit
was described by the equations

z

FIG. 3. ~a! is the x signal from Eq.~1!; ~b! is xf , an approxi-
mation to thex signal constructed from sequences of unstable p
odic orbits; and~c! is the same approximation when a Gauss
white noise twice as large as thex signal is added to thex signal.
While the approximation in~c! does not look that good, it is usuall
on the same side of zero as the time series in~a!, so some topologi-
cal properties are still captured.
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1618 PRE 59T. L. CARROLL
dx

dt
52a@1.47x2by1z2w2g1~w!#,

dy

dt
5210a@x10.2y#,

dz

dt
524.5a@y10.2z#,

dw

dt
5210a@22.49x10.5w1g2~w!#,

g1~w!5H 2m w<2m
w 2m,w,m
m w>m,

~2!

g2~w!5H m2w22~m12m2! w<22
m1w 22,w,2
m2w12~m12m2! w.2,

with a5104, b51.88, m50.635,m1520.5, andm250.5,
Figure 3~a! shows a time series of thew signal from the
circuit, digitized at 100,000 points/sec.

I digitized all four signals from the circuit, and used th
method of close approaches to find periodic orbits up to
riod 4. As with the Lorenz system, I then constructed
possible sequences up to length 8 using thew signal. For this
system, there were 768 such sequences. There are fewe
quences than for the Lorenz system because the circuit m
encounter a period 4 orbit for thew signal to cross zero. In
the Lorenz system, thex signal could cross zero on a perio
2 orbit.

Figure 4~a! shows thew time series from the circuit. Fig
ure 4~b! shows the approximation to the circuitw time series.
There are places where the approximation is good and pl
where it is not as good. Between 8 and 10 ms, it appears
the circuit spirals in to an unstable fixed point and th
shoots out. This motion does not stay near any single
period unstable orbit, so it is not well approximated.

Figure 4~c! shows the approximation to the time seri
when Gaussian white noise with a rms amplitude of 4
been added to the original signal. The rms amplitude of thw
signal from the circuit is 1.99, so the signal to noise ratio
0.5. The approximation is not as good with the added no
but the approximate signal is still usually on the same side
zero as the original signal.

V. SENDING A SIGNAL

If the approximation to the chaotic signal is to be usef
it must recover some property of the chaotic signal that
can control. One property that the approximation can pick
is which attractor the chaotic system is in. As a communi
tions example, I send either a signal from an asymme
chaotic attractor or its inverse. Because the attractor is
symmetric about zero, I can tell by fitting periodic orbi
whether I am sending the unaltered chaotic signal or its
verse.

For my test system, I used Eqs.~2! with a51, b52.4, and
m50.4. Equations~2! were integrated with a fourth orde
-
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Runge-Kutta integration routine with a time step of 0.02
Periodic orbits were found for the resulting attractor by usin
the method of close approach. Equations~2! were then inte-
grated with a time step of 0.08 to produce a time series of th
x signal. The average value of thex signal ~0.028! was sub-
tracted from thex signal to producexa , which had zero
mean. Sequences of length 8 periods based on unstable
riodic orbits up to period 4 were constructed as before, an
their mean values were subtracted. Figure 5 shows the z

FIG. 4. ~a! is a signalw from the 4-d circuit described in Eq.
~2!; ~b! is an approximationwf to the w signal, constructed from
sequences of unstable periodic orbits; and~c! is the same approxi-
mation when a Gaussian white noise twice as large as thew signal
is added to thew signal. Note the poor approximation betweent
58 and 10 ms, when the circuit is not near an unstable period
orbit.

FIG. 5. Zero mean signalxa from the simulation of Eq.~2! with
a51, b52.4, andm50.4.
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PRE 59 1619APPROXIMATING CHAOTIC TIME SERIES THROUGH . . .
meanx signal,xa .
To encode a signal,xa was multiplied bys561. The sign

of s was switched every 800 points, or about 26 cycles
produce a communications signalxc5sxa . The periodic or-
bit sequences and their inverses were fit to the time serie
before. To recover the signals, I recorded whether the se
quence that best fit each segment of the time series wa
verted or not. Figure 6~a! shows the value ofs, while Fig.
6~b! showss recovered from the periodic orbit approxim
tion to the time series. The magnitude ofs shown in Fig. 6~b!
is the value of the cross-correlation between the segmen
the time series and the periodic orbit sequence that best

Noise does not destroy the ability to communicate. Fig
6~c! shows the recovered value ofs when Gaussian white
noise with an rms amplitude twice the rms amplitude of
correctedx signal was added to thex signal. Thes signal is
still recovered accurately. Using longer sequences should
low signal recovery at lower signal to noise ratios, althou
the computational burden will increase.

VI. OTHER KINDS OF INTERFERENCE

Multipath interference can also degrade communicati
signals. Multipath interference occurs when the commun
tions signal is reflected from buildings or other objects. T
reflections arrive at the receiver at a later time because
travel a different path. If the time delay is a half integr
number of periods of the carrier signal, the interference
cancel out most of the received signal. The interfering sig
is also difficult to separate from the received signal beca
it is at the same frequency.

As a test of multipath interference, I delayed and atte

FIG. 6. ~a! is a communications signals used to modulate the
carrier signal of Fig. 4.~b! is the recovered modulation signalsf .
The magnitude ofxf is the cross-correlation between the modula
communications signalxc and its periodic orbit approximation.~c!
is the recovered modulation signalsf , when a Gaussian white nois
signal twice as large as the communications signalxc has been
added to the communications signal.
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ated the communications signalxc to produce the signa
Axc(t), whereA is an amplitude multiplier andt was the
delay time. I added these signals together to producexc
1Axc(t).

I used delays of1
2 data period~800 points, about 13

cycles! and 1
2 cycle ~about 60 points!. In both cases, I could

recover the information signals for amplitude multipliersA
up to 0.8.

I also tested the effect of periodic interference on t
communications signal. The power spectrum of thex signal
from Eq. ~2! has a large peak at about 0.42 Hz, correspo
ing approximately to the frequency of one cycle. I added
sine wave at this frequency to the communications signalxc .
Again I used periodic orbit sequences of length 8 to reco
the information signals. I was able to recover the informa
tion signal when the sine wave rms amplitude was up
about 3

4 of the rms amplitude of the communications sign
Using longer sequences should allow for recovery at low
signal to noise ratios.

VII. MAPS

It is natural to attempt this sort of approximation in map
In a map, a period 2 orbit is really two steps long, not
steps as in our last example, so computation time should
speeded up. I used the logistic map

xn1154xn~12xn!, ~3!

which I iterated with 64 bit precision. I then found period
orbits up to period 8 for the map.

I created longer sequences from orbits up to period 8
used all possible phases of each orbit in making my
quences. The prediction method described above was us
determine which orbits could follow each other. At the e
of each orbit, I extrapolated the next point on the orbit us
Eq. ~3!. In constructing sequences, I followed each orbit on
with another orbit whose first point was within some tole
ance of the extrapolated point from the previous orbit.
observing the behavior of the map, I set this tolerance at

All sequences of length 8 were combined to create
quences of length 16. I found 18 601 such sequences
order to lessen the computational time, I then checked wh
sequences of length 8 were actually likely to show up in
map. The map was iterated for 10 000 segments of lengt
and I recorded which orbit sequence was the best fit.
before, the mean was subtracted from each periodic o
sequence before the cross-correlation calculation. Many
riodic orbit sequences were never the best fit, so they co
be eliminated from consideration. I then combined this
duced set of length 8 sequences into sequences of lengt
There were now only 650 sequences of length 16, a red
tion by a factor of 28 in the number of sequences need
Figure 7~a! shows a time series from the map of Eq.~3!,
while Fig. 7~b! shows an approximation to that time seri
using unstable periodic orbits~the mean value has been r
stored for the figure!.

The logistic map also worked in a simple communicatio
scheme. I first subtracted the average value from a time
ries from the logistic map to produce a time series with z
mean. I then multiplied the zero mean time series by
information signals561 to produce a communications sig



-
or
le
h

th
th

I

w

m-
re
ge
ish
p-
are

to
ion
iple
om
rbit
h. It
mi-
ur,

se-

ng
ula-
be-
se-
ding
ch-

a
on-
os-
dic
hich

dic

1620 PRE 59T. L. CARROLL
nal. The sign ofs flipped every 48 map iterations. The com
munications signal was then approximated with periodic
bit sequences of length 16. The approximation revea
whether the communications signal was inverted or not. T
sign of s was successfully recovered when I added to
communications signal a Gaussian white noise signal wi
rms amplitude half that of the communications signal.
should be possible to recovers from higher noise levels by
using longer periodic orbit sequences, although there
then be more sequences to compare to.

FIG. 7. ~a! is the signalx(n) from the logistic map of Eq.~3!.
~b! is an approximation to the logistic map signal using perio
orbit sequences of length 16.
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VIII. CONCLUSIONS

I have described communications systems with two sy
bols, 61. It should be possible to create signals with mo
symbols by using more different attractors. Even with lar
noise levels, the periodic orbit approximation can distingu
between different chaotic attractors. The periodic orbit a
proximation technique should be useful even when there
other chaotic signals interfering with the desired signal.

The weakest point of using periodic orbit sequences
approximate chaotic signals is the amount of computat
needed. By using long enough sequences, it is in princ
possible to extract a chaotic communications signal fr
very large amounts of noise, but the number of periodic o
sequences increases exponentially with sequence lengt
may be possible to limit the number of sequences by eli
nating periodic orbit sequences that do not naturally occ
or by using the communication scheme of Hayeset al. @13#,
where the transmitter is controlled to produce specific
quences of unstable periodic orbits.

Improved techniques for searching for the best fit amo
the periodic orbit sequences could also speed up the calc
tion. It should be possible to calculate cross-correlations
tween all periodic orbit sequences. The periodic orbit
quences could then be grouped in a tree structure accor
to how closely they were correlated with each other. Sear
ing for the best fit periodic orbit sequence would then be
matter of searching through the tree, which should be c
siderably faster than comparing to every orbit. Another p
sible improvement is to check the most often used perio
orbits sequences first, and use the first sequence for w
the cross-correlation exceeds some threshold.
s.
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